Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.
نویسندگان
چکیده
Chlorarachniophytes are cercozoan amoeboflagellates that acquired photosynthesis by enslaving a green alga, which has retained a highly reduced nucleus called a nucleomorph. The nucleomorph lacks many genes necessary for its own maintenance and expression, suggesting that some genes have been moved to the host nucleus and their products are now targeted back to the periplastid compartment (PPC), the reduced eukaryotic cytoplasm of the endosymbiont. Protein trafficking in chlorarachniophytes is therefore complex, including nucleus-encoded plastid-targeted proteins, nucleomorph-encoded plastid-targeted proteins, and nucleus-encoded periplastid-targeted proteins. A major gap in our understanding of this system is the PPC-targeted proteins because none have been described in any chlorarachniophytes. Here we describe the first such protein, the GTPase EFL. EFL was characterized from 7 chlorarachniophytes, and 2 distinct types were found. One is related to foraminiferan EFL and lacks an amino-terminal extension. The second, distantly related, type encodes an amino-terminal extension consisting of a signal peptide followed by sequence sharing many characteristics with transit peptides from nucleus-encoded plastid-targeted proteins and which we conclude is most likely PPC targeted. Western blotting with antibodies specific to putative host and PPC-targeted EFL from the chlorarachniophytes Bigelowiella natans and Gymnochlora stellata is consistent with posttranslational cleavage of the leaders from PPC-targeted proteins. Immunolocalization of both proteins in B. natans confirmed the cytosolic location of the leaderless EFL and a distinct localization pattern for the PPC-targeted protein but could not rule out a plastid location (albeit very unlikely). We sought other proteins with a similar leader and identified a eukaryotic translation initiation factor 1 encoding a bipartite extension with the same properties. Transit peptide sequences were characterized from all 3 classes of targeted protein by comparing all examples of each class from expressed sequence tag surveys of B. natans and G. stellata. No recognizable difference between plastid- and PPC-targeted proteins was observed, but nucleomorph-encoded transit peptides differ, likely reflecting high AT content of nucleomorph genomes. Taken together, the data suggest that the system that directs proteins to the PPC in chlorarachniophytes uses a bipartite targeting sequence, as does the PPC-targeting system that evolved independently in cryptomonads.
منابع مشابه
Proteomics Reveals Plastid- and Periplastid-Targeted Proteins in the Chlorarachniophyte Alga Bigelowiella natans
Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid...
متن کاملCharacterization of periplastidal compartment-targeting signals in chlorarachniophytes.
Secondary plastids are acquired by the engulfment and retention of eukaryotic algae, which results in an additional surrounding membrane or pair of membranes relative to the more familiar primary plastids of land plants. In most cases, the endocytosed alga loses its eukaryotic genome as it becomes integrated, but in two algal groups, the cryptophytes and chlorarachniophytes, the secondary plast...
متن کاملDual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes.
In plants, many nucleus-encoded proteins are targeted to both mitochondria and plastids, and this process is generally mediated by ambiguous N-terminal targeting sequences that are recognized by receptors on both organelles. In many algae, however, plastids were acquired by secondarily engulfing green or red algae, which were retained within the endomembrane system. Protein targeting to these s...
متن کاملEvidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes.
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins ar...
متن کاملNucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
The plastid of chlorarachniophytes is distinguished by the retention of a relict nucleus (nucleomorph) derived from a green algal endosymbiont, which is located in the periplastidal compartment (PPC). The nucleomorph genome of a chlorarachniophyte, Bigelowiella natans, encodes several plastid-targeted proteins and hundreds of housekeeping proteins, but it lacks many fundamental genes to maintai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2008